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Third-Order Intermodulation Distortion
in Cascaded Stages

S. A. Maas,

Abstract— The relation for intermodulation distortion (IM)
levels in cascaded stages is based on the worst-case assumption
that intermodulation products at the output of each stage combine
in phase. However, because there is no apparent reason why IM
products should always combine in phase, efforts are customarily
made to discard this assumption. Using Volterra analysis, we
show tha~ in certain cases, the IM products do indeed combine in
phase, and the cascade relation gives an accurate, not worst-case,
prediction of distortion.

I. INTRODUCTION

‘r HE nth-order output intermodulation (IM) intercept point
of a cascade of stages (Fig. 1) is given by the following

well known expression [1]:

where IPn,m is the nth-order intermodulation intercept point
of the mth stage, and Gm is the gain of the mth stage. The
summation is carried out over all ill stages in the cascade.
Each term in (1) represents a contribution to the output
intercept point from one stage in the cascade, beginning with
the last.

In the derivation of (l), it is assumed that the distortion
currents or voltages generated by each stage combine in
phase with those generated by previous stages. Since there
appears a priori to be no reason for a relationship between
the phases of these distortion components, this becomes a
worst-case assumption. Furthermore, if the phases of the
distortion components are indeed random, it is unlikely in
long cascades that all IM products will combine in phase; the

distortion components should then combine powerwise, and
the IM intercept point should be greater than that given by
(l). Because of this reasoning, it is common practice in the
design of microwave systems to modify (1) so that the terms
represent power combination, and higher IP~ than that given
by (1) is predicted.

In this letter we examine the validity of (1) by means of
Volterra-series analysis. We show that, under conditions where
Volterra analysis is valid (weakly nonlinear or weakly excited

circuits), the IM products in certain cases combine in phase
or nearly in phase, and the “worst-case” assumption in (1) is
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Fig. 1. Cascaded weakly nonlinear stages.

valid. In other cases the in-phase assumption is not exact, but

may be a much better estimate than often perceived. Because
third-order IM is invariably of great concern, this work is
limited to third-order IM products.

II. THIRD-ORDER IM

We consider the cascade of two weakly nonlinear stages
shown in Fig. 1. The stages need not be unilateral, but it is
necessary that the terminations of each stage be the same as

those used to determine the transfer functions.
The distortion component at the output of the first stage is

[1], [2]

Vl(2~Z – @ = VO(W2)VO(kJ2)V; (Wl)~3,1(CU2, ~2, ‘~1)-

(2)

H .,m is the nth-order nonlinear transfer function of the mth

stage [2], and the asterisk signifies the complex conjugate.
The distortion output of stage 2 has two components: 1) the
distortion generated in stage 2 and 2)the distortion from stage
1, transferred to the output via the linear response

V2(2W’ – Ul) = vl(~2)vl(Qr2)v: (~l)H3,2(~2, W2, ‘Wl)

+ V~(2wZ – W1)H1,2(2W2 – WI). (3)

Noting that

Vl(wn) = Vo(wn)lzl,l(wn)

Vz(wn) = VI (wn)H1,2(wn) (4)

and substituting (4) and (2) into (3), we obtain

V2(2W2 – Wl)

– V;(w’)V; (wl)H;,~(w’)H~, ~(wl)Ha,’(@’, w’, ‘WI)—

+ v;(w2)v:(wl)~3,1 (w2, w’, ‘@71,2(z@2 – Wl)

(5)
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VO=AVi+BVi2+... C. Intervening Linear Stages

‘~

Even if the cascaded stages are identical, they are often
connected by intervening linear stages: a transmission line,
a filter, etc. Obviously, in dissimilar stages. the linear stage
could be included in the linear part of the second stage, so all
the conclusions for the cascade of dissimilar stages are valid.

Although any valid conclusions about dissimilar stages

Fig. 2. A single weakly nonlinear stage (e.g., each stage in Fig. 1) often cm should also be true of identical stages, our conclusions for
be modeled as a linear stage followed by a nonlinear one. The nonlinearity dissimilar stages were based on a special model (Fig. 2) that
is assumed to be memoryless and is characterized by a Taylor series iu the
vicinity of its dc bias point.

isnot always valid. It is possible to be more general. Using

the same approach as in the derivation of (5), we find that the
analogous relation is

wlhere, again, the first additive term represents the distortion

generated in stage 2, and the second represents the distortion
generated in stage 1. To determine whether these compo-
nents combine in phase, we must examine these two terms.
Specifically, is there a relationship between the phases of

‘l?,l(U2)~y,I(Wl )~3,2(W2, ~2, ‘Wl) and ~3,1(ti2, W2, ‘Wl)

~1,2 (2w2 – WI)? We examine several cases of interest.

A. Identical Stages

If the stages are identical, H3,Z = H3,1, HI,Z = HI,l

and the phase difference between the two terms is
/.H~,l(w2)H~,l(u1 ) – /Hl,l(2uz – WI). These approach
ec~uality as W1 - wz and thus WI = wz = 2W2 — W1. As
long as the phase of Hl,l (w) varies slowly with frequency
or the difference in frequency between W1 and W2 is small,
the phase difference between these terms will be small. The
IM products then combine in phase as W1 ~ W2, and (1) is
valid. In microwave components (e.g. multistage amplifiers)
that consist of identical or nearly identical stages, (1) gives
a valid estimate of the two-tone third-order IM intercept
point.

B. Dissimilar Stages

If the stages are dissimilar, at first glance there appears to be
no relation between the two terms in (5). However, in certain
catses it is possible to make some generalizations.

Many two-port electronic components can be modeled as

shlown in Fig. 2. This model consists of a linear stage followed
by a nonlinear one. (A subsequent linear stage could be added
as well; however, such a stage could be included in the linear
pm-t of the following stage, so it need not be part of this

model.) This model is used extensively in system analysis, and

describes many types of components accurately; for example,

it is a good model of a FET amplifier. In such components

Hn,rn(LL+,. w,,...) = CnHI,m(Wp)HLm(Wq) ~~~ (6)

where n is the order of the nonlinear transfer function and
Cn is a real constant [2]. Substituting this relationship into (5)

shlows that the phase difference again is 1 H~,2 (wz )H~j2(w1 ) –
1 H1,2 (2w2 – W1). This is zero under the same conditions as
for identical stages, i.e., as W1 ~ W2.

VZ(2WZ– WI) = l&(w2)V’(wl)H:,l (W2)H~,1 (WI)

X H3,2(kJ2, W2, ‘wl)H~(@2)H~(wl)

+ ~~2(W2)V((W1)H3,1 (w2> w2, –WI)

X H1,2(2wZ – w1)H~(2w2 – Wl) (7)

where HL is the linear transfer function of the intervening
linear stage. The conclusions for identical stages are valid
here if i H; (w2)lY~ (wl ) = lHL (2w2 – WI). This equality
becomes exact as WI - W2. However, these terms show that
the linear stage provides additional phase shift, and increases
the phase variation with frequency. The greater the phase shift
in the linear element, the closer in frequency W2 and U1 must

be for (1) to be valid. Also, if the linear stage introduces a
large phase shift at one frequency but not the other, as would
happen if the linear stage were a filter and one frequency were
close to its band edge, (1) might not be valid.

D. Third Harmonies

For third harmonics of a single excitation w, the intermod-
ulation product of interest is 3W = w + w + w. By inspection,
(5) becomes

VZ(3W) = Vj(W)Hj,1(W)H3,2 (W,U,W)

+ V:(W) H3>1(W,W1W )HI,2(SW). (8)

For identical stages the critical question is whether llZ~ (~) =
ZIZl (3w). This will be true, and (1) will be valid, only
if / Ifl (w) cx w at all frequencies up to 3w. Although it
is not impossible in some cases for this condition to be
met, most broadband microwave systems do not exhibit this
characteristic over such a broad frequency range.

We note that the same criteria are necessary for dissimilar
stiiges or for stages separated by a linear element, This will
not be proven here, but can be proven by the same techniques.

III. DISCUSSION AND CONCLUSION

In a system consisting of a chain of identical components
or dissimilar components that can be modeled as shown in
Fig. 2, the cascade expression (1) is an accurate predictor of
two-tone third-order IM intercept point. It is valid in these
cases when there are two excitation tones, closely spaced in
frequency. There are many systems that meet these conditions;
for example, an amplifier consisting of a cascade of identical
stages usually meets them.
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An invariant requirement of the validity of (1) in two-tone

excitation is that WI x W2. This is usually the case in two-
tone IM tests; however, in operational systems, excitations
are not necessarily close in frequency. In these, however, the
IM level wilI be equal to or less than that predicted by (l),

and thus (1) still stands as a reasonable worst-case estimate.
The deviation from (1) as Iwl – W2I increases is usually very
gradual; thus, even systems not strictly meeting the necessary

conditions often will be better characterized by (1) than by
combining IM powers instead of voltages.

These results have other practical implications. For example,
they imply that the conventional two-tone test used to measure

191

the IP3 of a quasilinear amplifier usually measures the worst-
case IM level. This result is important in characterizing
microwave systems. Also, system simulators using the model
of Fig. 2 to characterize nonlinear stages will always predict
the IP3 given by (l).
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